Computational statistics using the Bayesian Inference Engine
نویسندگان
چکیده
منابع مشابه
Computational statistics using the Bayesian Inference Engine
This paper introduces the Bayesian Inference Engine (BIE), a general parallel-optimised software package for parameter inference and model selection. This package is motivated by the analysis needs of modern astronomical surveys and the need to organise and reuse expensive derived data. I describe key concepts that illustrate the power of Bayesian inference to address these needs and outline th...
متن کاملUsing Bayesian Networks as an Inference Engine in KAMET
During the past decades, many methods have been developed for the creation of Knowledge-Based Systems (KBS). For these methods, probabilistic networks have shown to be an important tool to work with probability-measured uncertainty. However, quality of probabilistic networks depends on a correct knowledge acquisition and modelation. KAMET1is a model-based methodology designed to manage knowledg...
متن کاملThe Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks
Bayesian belief networks provide a natural, efficient method for representing probabilistic dependencies among a set of variables. For these reasons, numerous researchers are exploring the use of belief networks as a knowledge representation m artificial intelligence. Algorithms have been developed previously for efficient probabilistic inference using special classes of belief networks. More g...
متن کاملBayesian Statistics in Computational Anatomy∗
Computational anatomy is the science of anatomical shape examined by deforming a template organ into a subject organ. It compares and contrasts organ shapes to inspire personalized treatments or find group differences in case-control studies. Independently of the transformation model used, the task of finding deformations between organs is a statistical task concerned with estimating parameters...
متن کاملRapid Bayesian Inference of Global Network Statistics using Random Walks
We propose a novel Bayesian methodology which uses random walks for rapid inference of statistical properties of undirected networks with weighted or unweighted edges. Our formalism yields high-accuracy estimates of the probability distribution of any network node-based property, and of the network size, after only a small fraction of network nodes has been explored. The Bayesian nature of our ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2013
ISSN: 0035-8711,1365-2966
DOI: 10.1093/mnras/stt1132